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The timescale-invariant recognition of temporal stimulus sequences is vi-
tal for many species and poses a challenge for their sensory systems. Here
we present a simple mechanistic model to address this computational
task, based on recent observations in insects that use rhythmic acoustic
communication signals for mate finding. In the model framework, feed-
forward inhibition leads to burst-like response patterns in one neuron
of the circuit. Integrating these responses over a fixed time window by
a readout neuron creates a timescale-invariant stimulus representation.
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Only two additional processing channels, each with a feature detector
and a readout neuron, plus one final coincidence detector for all three
parallel signal streams, are needed to account for the behavioral data.
In contrast to previous solutions to the general time-warp problem, no
time delay lines or sophisticated neural architectures are required. Our
results suggest a new computational role for feedforward inhibition and
underscore the power of parallel signal processing.

1 Introduction

Sensory systems extract behaviorally relevant features from incoming stim-
uli, often in real time. A particular challenge arises when stimulus attributes
need to be computed that extend over longer time intervals, such as the du-
ration of sound elements within acoustic communication signals. In this
situation, the stimulus time course must be represented such that all poten-
tially relevant information remains transiently stored during the feature-
extraction process.

Natural signal variations may strongly distort a temporal pattern se-
quence. In an acoustic communication system, for example, changes of
the sender’s biophysical properties can result in large variations of the
frequency spectrum or even sequence speed. To correctly recognize a com-
pressed or stretched sequence, stimulus invariances under local or global
rescaling (time-warp and time-scale invariance, respectively) need to be
exploited. Humans and various animals master this task, as shown by the
ease with which we correctly identify spoken words even if the speaking
rate is varied by a factor of two or three (Klatt, 1976; Port & Dalby, 1982).
Similarly, many ectothermic animals use acoustic communication signals,
although the overall temporal scale of these signals varies strongly with
the surround temperature (Hauser & Konishi, 1999; Römer, 2001; Gerhardt
& Huber, 2002). In contrast, technical approaches, such as hidden Markov
models, which identify normal speech with great success, are often im-
paired under stimulus conditions with local time warp or global temporal
rescaling (Juang & Rabiner, 1991).

Previous theoretical solutions to the time warp problem exploit sub-
threshold oscillations and coincidence detection (Hopfield, 1996), transient
synchronization (Hopfield & Brody, 2001), and synfire chains with differ-
ent sorts of inhibition (Jin, 2004). Some of these models achieve timescale-
invariant sequence recognition at the expense of high computational costs
or a large number of dedicated delay lines. We aim at a simpler yet gen-
eral framework based on electrophysiological and behavioral data from a
well-established model system: grasshopper acoustic communication.

Various grasshopper species generate sound signals to be detected by
conspecific mates who can also use the song to assess the singer’s genetic fit-
ness (von Helversen & von Helversen, 1994). Grasshoppers generate these
“songs” by rhythmically rasping their hind legs across their forewings. This
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results in a periodic sound pattern that alternates between “syllables” and
“pauses,” that is, sound segments with high and low amplitudes, respec-
tively. In species such as Chorthippus biguttulus, the behavioral response
depends to a large extent on the ratio of syllable to pause duration (von
Helversen, 1972). If this ratio is kept constant, the absolute length of one
song unit (syllable plus pause) can vary by more than 300% without im-
pairing the behavioral response (von Helversen & von Helversen, 1994).

On the receiver side, the communication signals are processed by a
feedforward auditory system. Following mechanosensory signal transduc-
tion (Gollisch & Herz, 2005), receptor neurons encode the time-varying
stimulus envelope with high reliability and temporal precision (Stump-
ner, Ronacher, & von Helversen, 1991; Machens et al., 2003; Rokem et al.,
2006). These neurons project to local interneurons in the metathoracic gan-
glion whose responses are processed by a small set of ascending neurons
(ANs) and then sent to the brain (Stumpner & Ronacher, 1994). As the
highest neural processing stage, the brain integrates the AN signals with
other, potentially multimodal information to generate behavioral responses
(Ronacher, von Helversen, & von Helversen, 1986).

One particular ascending neuron (AN12) generates burst-like response
patterns at syllable onset. In a recent study, we have shown that the in-
traburst spike count of this neuron scales linearly with the duration of the
preceding sound pause (Creutzig et al., 2009; Creutzig, 2008). Integrating
the number of spikes over an extended time interval results in an unex-
pected observation: the total spike count reflects the characteristic syllable-
to-pause ratio of the species while being invariant to global temporal
rescaling of the song. Simply counting the AN12 spikes within a fixed time
window thus provides the behaviorally relevant information without any
need to explicitly calculate ratios between the syllable and pause durations.
We now address two key questions that are directly related to this finding.
First, is there a biologically plausible mechanism to explain the AN12 burst
patterns? Second, can this spike-counting strategy be applied to other song
features, and, more generally, is there a simple neural circuit to account for
the observed behavioral response pattern of grasshoppers?

2 Results

2.1 Feedforward Inhibition Explains Burst-like Discharge Patterns.
To explain the burst-like responses of the AN12 neuron, we use a mini-
mal model framework as depicted in Figure 1. In this model, the acoustic
signal drives auditory receptor neurons whose firing rate adaptation em-
phasizes the initial part of the sound pulse. An excitatory channel forwards
the receptor response directly to the AN12 neuron, whereas a second, in-
hibitory channel contributes with a low-pass-filtered version of the receptor
output. This role could be played by the SN1 neuron, which may provide
delayed inhibition to the AN12 neuron (Sokoliuk, 1992). The difference of
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Figure 1: Signal processing of the AN12 neuron, a key player for timescale-
invariant auditory sequence recognition in grasshoppers. The function of the
feedforward inhibition circuit is demonstrated with a block stimulus that mim-
ics the characteristic syllable-pause structure of grasshopper acoustic commu-
nication signals. Adaptation of the auditory receptor neurons emphasizes the
initial part of the syllable. The reduced sound intensity during the pause still
excites some of the receptor neurons that have, hence, a nonzero steady-state fir-
ing rate between syllables. Due to the adaptation dynamics, that asymptotic rate
is higher than the receptor activity directly after stimulus offset. An excitatory
channel forwards this signal directly to the AN12 neuron, whereas a second,
inhibitory feedforward channel contributes with a low-pass-filtered version of
the signal, as sketched in the lower central part of the figure. The difference of
both activities drives the leaky integrate-and-fire dynamics of the AN12 model
neuron and leads to the burstlike discharge patterns.

both activities drives the leaky integrate-and-fire dynamics of the AN12
neuron.

The mathematical model for this feedforward inhibition contains seven
free parameters (see below and the appendix). The two parameters of the
receptor neuron were calibrated by hand within the range of experimen-
tally observed values (Benda, 2002): The relative adaptation level was set
to Ar = 0.5, and the adaptation time constant was chosen as τr = 30 ms. As
shown by simulations, the circuit dynamics does not depend sensitively on
the precise values of these parameters. The other five parameters (the two in-
hibitory channel parameters τinh , Ainh and the three parameters τV , Vth , and
Vreset of the integrate-and-fire neuron) were optimized for all six measured
AN12 neurons with respect to the average distance between experimental
and model spike trains, as measured by the quality measure � (see the
appendix). For all cells, the resulting parameter values for the inhibitory
feedforward neuron (τinh , Ainh ) were rather similar, τinh = [30 − 45 ms],
Ainh = [1.25 − 1.4]. The model quality hardly varied within this range of
parameters. We therefore fixed τinh = 40 ms and Ainh = 1.3 for all cells
and individually optimized the remaining integrate-and-fire parameters.
Finally, the refractory period was set to 1.75 ms for all cells, corresponding
to the shortest observed interspike interval. The optimization was done
as follows. Optimization criterion was the �-value ∈ [0, 1], a measure of
similarity as defined in the appendix. All five parameters were optimized
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Figure 2: Comparison of experimental and simulated AN12 responses. (a) Am-
plitude envelope of a characteristic grasshopper song: left, longer sound stretch
illustrating overall song characteristics; right, expanded time course emphasiz-
ing syllable-to-syllable variability. (b) Measured response of the AN12 neuron.
Bursts follow syllable onset with high reliability and a response latency of about
12 ms. This latency is due to acoustic delays, response latencies of the receptor
neurons, propagation delays along the auditory nerve, synaptic delays, and
the intrinsic dynamics of the AN12 cell. (c) The feedforward inhibition circuit
reproduces the experimental burst characteristics.

such that for seven songs, experimental and model spike trains were as
similar as possible. With these parameter values, the �-value was calcu-
lated for the eighth song. This leave-one-out procedure was repeated for all
songs to compute a mean �-value. Each cell was fitted with an individual
parameter set. For the six cells, this led to a �-range of 0.33 to 0.75 with
a median of 0.53. As a comparison, we also measured the intertrial simi-
larity between repetitions of the same song and its average spike train for
each cell (range: 0.49–0.84; median = 0.60) in the recorded AN12 data. This
shows that the trial-to-trial variability is almost as large as the deviations be-
tween the experimental and simulated responses, underscoring the model
quality.

The model dynamics agree well with measured AN12 responses, even
if natural grasshopper songs are used as realistic input stimuli. This is
demonstrated in Figure 2 for the raw spike patterns and in Figure 3 for
two key response characteristics of the AN12 neuron: the burst-triggered
average (BTA) of the model neuron, that is, the average stimulus preceding
a burst with given spike count, displays the same qualitative features as
the real neuron (see Figures 3a to 3c). Similarily, the correlation between
the intraburst spike count (IBSC) and preceding pause duration closely
follows a linear relation in both, experiment and model (see Figures 3b and
3d). Similar to physiological results from the AN12 neuron (Creutzig et al.,
2009), the model spike count is independent from both onset slope and
syllable duration and increases slightly with onset amplitude.

Without receptor adaptation, the model exhibits unrealistically high ac-
tivity levels of up to 26 spikes per burst in response to block stimuli, far
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Figure 3: Encoding properties of the AN12 neuron. (a) Burst-triggered aver-
ages (BTAs) calculated from experimental AN12 responses. The BTA is the
average stimulus preceding a burst with given intraburst spike count (IBSC).
(b) Pause durations as a function of subsequent IBSCs; gray lines denote upper
and lower quartiles. The best linear fit agrees well with a direct proportionality:
the y-intercept is only −1.1 + /− 2.1 ms. (c) Burst-triggered averages from the
modeled AN12 neuron resemble experimental BTAs. (d) Similarly, IBSCs of the
model neuron reflect pause durations; the gray lines denote again upper and
lower quartiles. Data in a and b redrawn from Creutzig et al. (2009).

more than observed in experiments (up to approximately 10 spikes). In ac-
cordance with the literature (Römer, 1976; Benda, 2002), we therefore kept
receptor adaptation as an important part of the model.

Could the burst response of the AN12 neuron also be explained by a
cell-intrinsic mechanism? It is well known that spike frequency adaption
(Benda & Herz, 2003) leads to burst-like spike patterns at stimulus onset
(Izhikevich, 2004). However, any adaptation mechanism caused by spike
activity would imply that the intraburst spike count depended on the du-
ration, and possibly also intensity, of the preceding syllable—but not on
pause duration. Such a dependence cannot be inferred from statistical ob-
servations for AN12 neurons (Creutzig et al., 2009). The separation of cell-
intrinsic adaptation from downstream processes has been investigated for
some grasshopper interneurons by recording from the same cell applying
both acoustic and intracellular current stimulation (Hildebrandt, Benda,
& Hennig, 2009). However, this approach has not yet been applied to the
AN12 neuron. We would expect that its phasic response is due to presy-
naptic processes. We conclude that feedforward inhibition as sketched in



Timescale-Invariant Pattern Recognition 1499

Figure 4: Behavioral response of Chorthippus biguttulus females. The dashed
curve encircles the region of syllable and pause durations within artificial block
stimuli (see inset) to which female grasshoppers respond (one animal, 20%
response level). Boxes illustrate the response variability across 17 females for a
syllable duration of 80 ms. The gray line indicates a timescale invariance: jointly,
rescaling of pause and syllable durations does not change behavioral response,
at least for syllable durations between about 40 and 140 ms. Modified from von
Helversen and von Helversen (1994).

Figure 1 is sufficient to explain the burst-like discharge patterns observed
in the electrophysiological experiments; no intrinsic burst mechanisms are
required.

2.2 A Minimal Neural Circuit Accounts for Behavioral Responses.
Female grasshoppers evaluate male songs and respond only to specific
syllable-pause combinations. In particular, the behavioral experiments of
von Helversen and von Helversen (1994) with artificial model songs show
that equally preferred songs lie on oval curves in the syllable-pause plane
(see Figure 4).

How is the information contained in AN12 spike trains related to these
behavioral responses? On the lower border of the behavioral response curve
in Figure 4 and for syllable durations between about 40 and 140 ms, pause
duration is proportional to syllable duration. Within this parameter re-
gion, temporal rescaling of both syllable and pause duration thus does not
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Figure 5: Full model circuit. A set of parallel feature detectors evaluates the
input stimuli. Here, the AN12 neuron measures total pause duration, the AN6
encodes total syllable duration, and a third, rapidly adapting neuron counts
the number of syllables.The outputs of these three neurons are integrated in
time, thresholded, and then combined through an AND operation that could
be implemented through a coincidence detector.

result in behavioral changes. Interestingly, the AN12 response patterns ex-
plain this timescale invariance. As discussed by Creutzig et al. (2009), the
intraburst spike count of the AN12 neuron increases linearly with pause
duration. Stretching both syllable and pause durations thus increases the
number of spikes per burst. The number of bursts per unit time decreases
by the same factor. Hence, the total number of spikes within a fixed readout
window is constant under a global temporal rescaling of the song.

A simple mechanism could account for the observed behavior of
Figure 4. If the total number of AN12 spikes per unit time is above a cer-
tain target value, the female responds to the song, and otherwise not. This
would explain the almost straight lower boundary of the behavioral re-
sponse curves. To explain the deviations at small and large syllable du-
rations as well as the upper part of the iso-response oval, two additional
mechanisms are required (see Figure 5). To avoid responses when the pause-
to-syllable ratio is too large, the total duration of all syllables within a fixed
time window could be measured and required to be above a certain thresh-
old. The permitted songs would lie below the straight line denoted by
“syllable-integration threshold” in Figure 6. Similarly, to avoid responses at
high syllable and pause durations, the total number of syllables in a fixed
time window could be measured and required to exceed another thresh-
old. To satisfy this third criterion, songs would need to be to the left of the
straight line denoted by the syllable-count threshold.

These threshold conditions can be formalized. For the pause-integration
threshold, if spike count is proportional to pause duration and we inquire
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Figure 6: Model behavior. For artificial block stimuli, the circuit model sketched
in Figure 5 generates a positive response if the syllable and pause durations of
the input stimuli are within a triangle delimited by the dotted lines. Firing rate
adaptation of the period-counter neuron bends the “syllable count” threshold
and results in the shaded response region, which resembles the behavioral data
from Figure 4, shown by the dashed lines. The zigzag contour is due to finite
size effects of the numerical simulation.

about the total rate of the spikes per second, then if k is the spike count, p is
pause duration, s is syllable duration, and αp is a constant of proportionality,

k = αp p
p + s

. (2.1)

If kp is the marginal spike count that elicits a response, then a necessary
condition for behavioral reaction is given by k > kp which translates into

p >
kps

αp − kp
. (2.2)

Similarly for the syllable-integration threshold, if spike count is propor-
tional to syllable duration and αs is another constant of proportionality and
ks is the marginal spike count that elicits a response, then

s >
ks p

αs − ks
. (2.3)

For the syllable-count threshold, the number of syllable-plus-pause units
per time, that is, the syllable frequency, fs+p must be above a certain
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threshold:

fs+p > f0. (2.4)

In the resulting circuit model, input information is transmitted by as-
cending neurons, whereas integration and thresholding are performed by
downstream readout neurons. Pause integration is done by the summation
of the AN12 spike train, as discussed before. Syllable integration is accom-
plished by a second neuron that fires tonically in response to sound inputs,
resulting in a spike count that is proportional to syllable duration. The AN6
neuron fits this description (Stumpner et al., 1991). The AN6 neuron fires
tonically throughout the syllables, with rather little adaptation during a
song (Stumpner & Ronacher, 1991; Krahe, Budinger, & Ronacher, 2002). It
is thus an ideal candidate for measuring syllable duration. A hypothetical
readout neuron counts the number of spikes per time, and, assuming direct
proportionality, this neuron infers information on the total syllable dura-
tion. A third neuron that responds phasically to syllable onsets provides
the input for a syllable counter. This neuron spikes at the beginning of a
syllable. A count of spikes by a readout neuron can then be interpreted as a
syllable counter. A number of neurons respond phasically, such as the AN1,
AN3, AN4, and AN12. However, the AN1 responds only to high intensi-
ties, and the AN3 and AN4 exhibit strong response variability. The AN12 is
the most reliable candidate for syllable counting too. In this case, however,
information is readout by taking a burst as a unit of information, that is,
by interpreting the number of bursts as the number of syllables. As little
is known about the readout in the brain ganglion, we chose to depict the
syllable count as a separate process in Figure 6.

The ascending neurons, such as the AN12 and the AN6, transmit analog,
continuous information on specific parameters, such as pause durations.
However, the brain ganglion is not required to keep all this informa-
tion. Rather, brain neurons can simply threshold the spike count and re-
spond only with a positive output (e.g., a spike) when the specific spike
count is high enough. This is a very simple neural architecture. As a final
step, a logical AND operation could be implemented through coincidence
detection—by another thresholding operation—which results in the trian-
gular response field of Figure 6.

To obtain the desired response oval instead of the triangle, the third neu-
ron adapts to a small, positive firing rate. Hence, in addition to its strong
phasic response, this neuron is also active for long syllable duration. In
effect, when pause duration increases while syllable-plus-pause duration
is constant (i.e., along straight lines that are parallel to the syllable-count
threshold in Figure 6), fewer spikes are elicited. Accordingly, a higher syl-
lable count is required to reach the threshold so that the syllable count line
bends leftward. With a time constant of τ = 3 ms and a steady-state firing
rate that equals 10% of the onset rate, the output of the model circuit comes
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Figure 7: Prediction of the integration hypothesis. (a) Schematic drawing of
four different block stimuli. Parameter values correspond to syllable and pause
durations (in ms), respectively. Model songs A and B would not elicit a be-
havioral response because their pause and syllable durations lie outside the
parameter region, resulting in positive behavioral responses. In contrast, model
song C falls into that region. Song D combines elements of songs A and B and
has the same syllable-pause ratio as song C. If syllable and pause durations are
integrated over a timescale that is much longer than the song elements, mix-
ture D should also elicit a behavioral response. (b) The mean syllable-to-pause
combination of each model song together with the region of positive behavioral
responses (redrawn from Figure 4).

close to the measured behavioral data, as shown in Figure 6. Note that the
model predicts a positive behavioral response even for very short pause
and syllable durations (the gray-shaded region in the lower left corner of
the triangle of Figure 6). In experiments, Chorthippus biguttulus does not
respond to these combinations of short syllables and short pauses (von
Helversen & von Helversen, 1997). In this regime, however, additional pro-
cesses such as gap detection (von Helversen, 1972; Ronacher & Stumpner,
1988) are operating, so that a proper extension of the model could account
for the differences.

The predictive power of the model could easily be tested. Since temporal
integration of ascending neurons is responsible for song recognition, the
detailed song structure does not play any role within the model framework.
All that matters are temporal averages of syllable and pause durations.
Hence, alternating between two different syllable-pause combinations, each
of which is not sufficient to elicit behavioral responses, should lead to a
positive classification (see Figure 7).

3 Discussion

3.1 A New Computational Role of Feedforward Inhibition. As
demonstrated in this letter, a small and rather simple neural circuit can
be used to encode the duration of a stimulus pause (see Figure 1). A key
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ingredient is a strong inhibitory channel parallel to the direct excitatory
input to this neuron. The long time constant τinh = 40 ms of the inhibitory
neuron makes it sensitive for pause durations. For short pauses, the in-
hibitory activation rinh is still near the maximum value reached during the
preceding stimulus pulse so that it dominates the excitatory channel, and
thus the AN12 receives a small input eliciting only one or two spikes. With
increasing pause length, the inhibition decays away, and therefore the exci-
tatory input to the AN12 gets stronger and stronger, resulting in more and
more spikes evoked by the syllable onset. As a consequence, the output
neuron generates a burst whose intraburst spike count directly reflects the
pause duration (see Figure 3).

Feedforward inhibition can thus be used not only to enforce the tem-
poral precision of downstream neurons, as has been reported for auditory
cortex (Cruikshank, Rose, & Metherate, 2002; Elhilali, Fritz, Klein, Simon, &
Shamma, 2004; Tan, Zhang, Merzenich, & Schreiner, 2004; Wehr & Zador,
2005), hippocampus (Pouille & Scanziani, 2001) and lateral geniculate nu-
cleus (Blitz & Regehr, 2005). Furthermore, feedforward inhibition helps to
tune bat auditory midbrain neurons to behaviorally important parameters,
including signal duration (Covey & Casseday, 1999), and is used for gap
detection in grasshoppers, another pattern detection circuit (Krahe et al.,
2002). As shown by our results, feedforward inhibition can also help in-
tegrate information on long timescales and yet maintain a precisely timed
response, thus providing a simple solution to the resolution-integration
paradox (deBoer, 1985; Nelken, 2004). In addition, the grasshopper example
demonstrates that feedforward inhibition can be used to compress stimu-
lus information—a pause of 40 ms is represented by a short burst that may
last for 4 ms only. This burst code allows the system to multiplex informa-
tion about the time-of-occurrence and behavioral relevance of a particular
sound pattern (Creutzig et al., 2009). Feedforward inhibition is thus a net-
work motif with most interesting computational capabilities.

Similar to our model, an interplay of fast and slow dynamics in bursting
neurons has been used to model time-warp invariance in Gollisch (2008).
This model differs from our approach in relying on intrinsic bursting dy-
namics and a push-pull mechanism to drive the output neuron. Despite
these fundamental cellular differences, the model generates similar output
behavior for block stimuli. It would therefore be interesting to test the pre-
dictions of both models with more complicated inputs such as the mixture
stimuli shown in Figure 7.

3.2 Parallel Signal Processing and Temporal Integration. Summation
of AN12 spikes within a fixed time window can explain timescale invari-
ance along one side of the behavioral response curve, as illustrated by
the gray line in Figure 4. However, this moving average of AN12 activity
cannot account for the full behavioral response curve. We have therefore
assumed that three song features are processed independent of each other
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(see Figure 5). Here, pause duration is measured by the AN12 neuron, syl-
lable duration is measured by the AN6 neuron, and the syllable count is
measured by a phasic neuron, potentially also the AN12. The spike (or
burst) count of each neuron is thresholded by readout neurons. If each
readout neuron responds positively, a behavioral response is elicited.

This model of parallel feature detection, integration, and subsequent
thresholding is reminiscent of the pulse-integrator model proposed by
Alder and Rose (1998) for sound-pattern recognition in acoustically com-
municating frogs. The behaviorally relevant timescale of integration for
female grasshoppers is around 1 s. Figure 18 in von Helversen (1972) shows
a steep decline of responsiveness if song models shorter than 1.2 s were pre-
sented. The required long integration times have been observed not only
in frogs but also in various other species, including electric fish (Oestreich,
Dembrow, George, & Zakon, 2006) and primates (Luna, Hernandez, Brody,
& Romo, 2005). This makes us confident that a similar integration mecha-
nism may exist in insects too.

In summary, we have shown how a seemingly complicated task such as
timescale-invariant pattern recognition can be accomplished by a rather el-
ementary circuit. The proposed combination of feedforward inhibition, par-
allel feature detection, and temporal integration is consistent with known
neurophysiological data. The model framework explains behavioral data
and makes quantitative predictions to be tested in future experiments. The
simplicity of the circuit and its surprising computational capabilities make
it an ideal building block for more general temporal-sequence processing
tasks.

Appendix: Technical Notes on the Modeling Results

A.1 AN12 Model. Within the sound-preprocessing circuit (see Figure
1), the firing rate adaptation a (t) of auditory receptor neurons is determined
by the time-dependent acoustic stimulus s(t) (Benda & Herz, 2003),

τr
da (t)

dt
= −a (t) + s(t). (A.1)

The adaptation time constants τr of grasshopper receptor neurons are in the
range of 30 to 50 ms (Gollisch & Herz, 2004). They are thus at least one order
of magnitude larger than the time constants relevant for electrical integra-
tion (Gollisch & Herz, 2005). On the phenomenological level of the current
model framework, this separation of timescales allows us to approximate
the receptors’ time-dependent firing rate rr (t) by

rr (t) = s(t) − Ar a (t), (A.2)

where Ar ∈ [0, 1] denotes the scaling factor for adaptation.
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The AN12 neuron receives a mixed input typical for a feedforward inhi-
bition circuit. The first component is the receptor output rr (t). The second
component is a sign-inverted low-pass-filtered copy of rr (t) generated by
an inhibitory interneuron with firing rate rinh (t),

τinh
drinh (t)

dt
= −rinh (t) + rr (t).

To capture the discrete spike output of the AN12 neuron, it is described as
a leaky integrate-and-fire neuron,

τRC
dV(t)

dt
= −V(t) + rr (t) − Ainhrinh (t), (A.3)

where Ainh denotes the relative strength of the inhibitory input. When-
ever the voltage V(t) reaches the threshold Vth , the model neuron spikes
and V(t) is reset to Vreset . After a refractory period determined by the
minimum interspike interval of the experimental data (1.75 ms), the cell
again integrates the feedforward inputs. Optimizing parameter values led
to τRC = 6.9 ± 1.2 ms, Vth = 0.01 ± 0.004, and Vreset = 0.006 ± 0.004.

A.2 Model Quality. From the digitized recording signal, spike times
were determined using a voltage-threshold criterion. To account for neural
fatigue, bursts were defined by a recursive formula: a spike belongs to a
burst if it follows the preceding nth spike by no more than (3 + n) ms. The
first interspike interval within a burst is thus at most 4 ms, the second at most
5 ms, and so on. This definition reflects the observation that interspike inter-
vals within an AN12 burst typically increase from spike to spike. Applying
a fixed interspike interval (ISI) criterion would either miss the later spikes
within a long burst (for short ISI cutoffs) or misclassify isolated spikes as be-
longing to a burst (for longer ISI cutoffs). For notational simplicity, isolated
spikes were treated as bursts with one spike. The intraburst spike count
(IBSC), that is, the number of spikes within a given burst, was assigned
to the time of the first spike of that burst (bin size: 2 ms). This procedure
defines a reduced spike train representation that takes the IBSC time course
into account but neglects the temporal fine structure within bursts. Mean
IBSCs were then calculated from eight repetitions of the recorded AN12
responses. Finally, bursts in the recorded AN12 data and in the model spike
train were compared and considered coincident when the respective burst
times were within one bin. The smaller of the two IBSCs contributes to
ncoinc , the number of coincidence spikes.

Model parameters were optimized by maximizing the similarity � be-
tween the mean responses of model and recorded data. Let nAN12 and nmodel

denote the total mean recorded and modeled spike counts, respectively,
and ncoinc the number of coincidence spikes, as defined above. Then the
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coincidence measure is defined as � = 2ncoinc

nAN12+nmodel
. This quantity equals one

for spike trains that are identical within this definition and vanishes if no
coincident spikes occur.

A.3 Full Model. The AN12 neuron is specified as above. For the subse-
quent threshold operation, the AN12 output RAN12 is defined as the sum of
all spikes within a readout window with length 1 s.

The firing rate of the AN6 neuron is assumed to be rAN6(t) = 1 s−1 when
the model is presented with a syllable and rAN6(t) = 0 between syllables.
For the subsequent threshold operation, the output of AN6 is integrated
over the same readout window: RAN6(t) = ∫ 1s

0 rAN6(t − τ ) dτ .
The firing rate radapt (t) of the rapidly adapting neuron in the circuit’s

third branch follows a dynamics that is that of the receptor neurons,

radapt (t) = s(t) − Aadapt a (t)

τadapt
da (t)

dt
= −a (t) + s(t),

where τadapt = 3 ms and Aadapt = 0.9. For the subsequent threshold op-
eration, radapt (t) is also integrated over a 1 s time window: Radapt (t) =
∫ 1s

0 radapt (t − τ )dτ . The threshold values are

θAN12 = 8

θAN6 = 0.72

θadapt = 0.13.

Note that θAN6 can be interpreted as the minimum syllable-to-period ratio
needed to elicit a response. Only if all three thresholds are exceeded—
RAN12 > θAN12 and RAN6 > θAN6 and Radapt > θadapt—is the binary behav-
ioral output set to 1.
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