Wenz, L.; Levermann, A.; Auffhammer, M.
North–south polarization of European electricity consumption under future warming
in Proceedings of the National Academy of Sciences (PNAS), 28.08.2017
Peer Review , Climate and Development
There is growing empirical evidence that anthropogenic climate change will substantially affect the electric sector. Impacts will stem both from the supply side—through the mitigation of greenhouse gases—and from the demand side—through adaptive responses to a changing environment. Here we provide evidence of a polarization of both peak load and overall electricity consumption under future warming for the world’s third-largest electricity market—the 35 countries of Europe. We statistically estimate country-level dose–response functions between daily peak/total electricity load and ambient temperature for the period 2006–2012. After removing the impact of nontemperature confounders and normalizing the residual load data for each country, we estimate a common dose–response function, which we use to compute national electricity loads for temperatures that lie outside each country’s currently observed temperature range. To this end, we impose end-of-century climate on today’s European economies following three different greenhouse-gas concentration trajectories, ranging from ambitious climate-change mitigation—in line with the Paris agreement—to unabated climate change. We find significant increases in average daily peak load and overall electricity consumption in southern and western Europe (∼3 to ∼7% for Portugal and Spain) and significant decreases in northern Europe (∼−6 to ∼−2% for Sweden and Norway). While the projected effect on European total consumption is nearly zero, the significant polarization and seasonal shifts in peak demand and consumption have important ramifications for the location of costly peak-generating capacity, transmission infrastructure, and the design of energy-efficiency policy and storage capacity.